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1. Introduction

Increasingly, uses are being found for dual approaches to the consumer and
the firm.! In consumer analysis one can use the expenditure function, which
relates the minimal level of income necessary to achieve a given utility level to
the vector of commodity prices. In teaching public finance, we have found three
problems which are nicely approached in this way — the deadweight burden of
taxation, optimal commodity taxes, and criteria for indivisible public invest-
ments financed by lump sum taxation. This paper presents these three uses after
briefly reviewing the properties of this function. The appendix contains more
details on the mathematics of the expenditure function.

2. Expenditure function?

The conventional treatment of consumer choice is to consider the maxi-
mization of utility subject to a budget constraint:
Maximize U(x) M
subjecttog-x = I,
where x represents the vector of net demands (with commodities supplied,
like labor, therefore measured negatively), ¢ and 7 being consumer prices and
income. If we consider the dual to this problem we would express it as?

Minimize q-x

2
subject to U(x) = u. @)

*We wish to thank the National Science Foundation for financial assistance.

1Sec e.g. E. Diewert.

2For more details on the expenditure function see the appendix. For earlier presentations
see S. Karlin (1959) and L. McKenzie (1957).

3We assume local nonsatiability, which converts the inequality constraint into equality.
In addition we assume U to be strictly quasi-concave.
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Let us denote by E(g;u) the level of income needed at this minimization. By
definition, we have

E(g;u) = Y qixt = Y qixq;u), (3)

where x} represents the optimal level of demand to solve the minimization
in eq. (2), and depends functionally on prices and the utility constraint.

The principal properties of the expenditure function are summarized in the
appendix; these properties include concavity and homogeneity of degree one
in prices. What is extremely useful for later analysis is that the partial derivative
of the expenditure function with respect to the ith price is precisely the optimal
demand for the ith good. Hence, this price derivative yields the Hicksian or com-
pensated demand curve.* A simple argument for this conclusion can be given.
Note first that if x* = x*(¢;u) is the optimal demand vector in eq. (3), then U(x*)
Z u. Hence, the minimization in eq. (2) implies that for any positive price vector ¢’

g -x*—E(q';u) 2 0. (4)

The expression (4) attains a minimum of zero at ¢’ = ¢, and hence must satisfy
the first order condition that its partial derivatives with respect to ¢, evaluated
at g, equal zero; i.e.,

x¥—0E(q;u)ldq; = 0. ()

Thus, the partial derivatives of the expenditure function with respect to prices
are indeed the optimal quantities.® Of course the derivatives of the demand
curves are just the second derivatives of the expenditure function and we can
obtain the familiar properties of the Slutsky matrix from the fact that it is the
matrix of second derivatives of E,

Ei = xi(q’ U),
E,‘j — axi(q’ H) ) (6)
oq,

3. Deadweight burden of taxation
3.1. Definition

There are several different definitions of deadweight burden that seem natural
to pursue.® The question being considered is measuring the loss to the economy

*See J.R. Hicks (1939) or P. Samuelson (1947).

>This argument is due to W.M. Gorman. We have assumed implicitly that E is differentiable
in prices; the first proposition of the appendix verifies that this is always the case.

®For a discussion of different measurements see H. Mohring (1971). We shall consider a
single consumer representing either a one consumer economy or a many consumer economy

which redistributes to maximize an individualistic social welfare function, see P. Samuelson
(1956).



P.A. Diamond, D.L. McFadden, Expenditure function in public finance 5

from the use of distorting rather than nondistorting taxes. For our purposes we
shall define the deadweight burden, or loss, as the excess of the income we must
give a consumer to restore him to his pretax indifference curve over the tax
revenue collected from him. Let us denote consumer prices by g and producer
prices by p, so that taxes ¢ are the difference between them. While it is not clear
that this is the most intuitive notion, for consistency we measure the tax revenue
for this definition as the level collected at the consumer equilibrium after the
consumer has been restored to his original indifference curve. Let us define the
compensated tax revenue function, 7,

T(g, p, u) = ) (4:—PIEq, u) = Y LE(q, u). (7
It is also necessary to select the utility level for this measure. Naturally it is the
level of utility achieved by the consumer in the absence of taxation. If there were
no lump sum income at the pretax equilibrium, the pretax utility and prices
would satisfy

E(p,u) = 0. (%)

We assume that there are fixed producer prices (and so constant returns to
scale) and no other sources of lump sum income, so that eq. (8) holds. (Any

prx=0
Good 1
A
g-x=E
B
E
0 Good 2

Fig. 1
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fixed endowment has been subtracted out to obtain utility in terms of net trades.
Thus taxes are on transactions, not consumption.) We can now define the loss
function, L, as the difference between income needed at consumer prices g
and tax revenue collected,

L(q’ Db, u) = E(qa u)_ T(q’ b u)' (9)
For the two commodity case we can show the loss measurement in a diagram
assuming that good one is numeraire. The diagram is in the fourth quadrant
representing a demand for good one (a consumer good) and a supply of good
two (e.g. labor). Without taxes the consumers budget line passes through the
origin (since he has no lump sum income) and leads to the choice of 4 as the
utility maximizing point. With taxation of good two, giving rise to prices g,
we must shift the budget line upwards by the amount of the expenditure function
to permit the same utility level to be achieved. This is shown in fig. 1 where B
represents the compensated post tax consumer equilibrium.

Good 1

revenue

E-T
>Lump sum income

Deadweight loss <

O —

Good 2

Fig. 2
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To determine the division of OF between tax revenue and loss, we draw in
the budget line through B which is parallel to the pretax budget line. With good 1
as numeraire, this line has the equation’ p-x = E—T. Thus the loss is the
distance from the origin to the intercept of the line through the post tax equili-
brium with slope determined by pretax prices.

3.2. Marginal deadweight burden

Given a concept of deadweight burden it is natural to ask how it varies with
the tax structure. To answer this question we can differentiate the definition
of the loss with respect to a consumer price, holding producer prices constant

oL(q, p, u) oT

—— = E,—— = =) (qi—p)E(q, u) = — ) LE,. (10)
a4y f 04 Z Z

It is natural also to relate the marginal loss to the marginal tax revenue

OLlog,  —)tE;, (a0
oT|oq,  E+YLE,

(This expression will return below when we consider the optimal tax, which
requires constancy in this ratio for all taxed goods.) Given the definition of
marginal deadweight burden we can, naturally, integrate back to obtain the
total loss, integrating from p to g. By suitable choice of the approximation to
this exact expression we can then obtain the deadweight loss measure of 4.
Harberger (1964), interpreting his analysis as using derivatives of compensated
demands. To perform the integration let us integrate from p; to g, for each
commodity in succession (i.e., move out parallel to the axes successively). When
integrating with respect to the ith tax the i—1 prices that come earlier are at
their ¢ levels while the n—i prices that come later are at the p levels:

i—1

q;
".pi {Zl(q_]_pj) Eji(qla q29 ey qi-1> S, pi+ ) BT} pn)
j=

[\/J:

L(p,q,u) = —

i=1

+(—pIE;(q1:92 - - s Gim15 S Div1s - - P pds. (12)

Let us approximate® these integrals by choosing one price vector § and evalua-
ting all the derivatives of F at this single price vector rather along the path from
p to g. With this approximation we have

7Atthe point Bwe haveq-x = Fandp-x = E-T.Thustx = T.
8While in each integral we can use some intermediate value of E;; to preserve the value of

the integral, we cannot generally use the value obtained at the same point in all the integrals
we are evaluating.
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n o i—1
L(p,q,u) = — ;1 Iz: {'=Z1(qj —PDE;ji+(s—pi)E;} ds

i—1

= —-'2:11{"= l(qi —p)g;—P)E;; +%(Qi__Pi)2Ei.'} (13)

n
= _%.z
=

where the last two steps follow first by integrating and then, recognizing that
E;; = Ej;, by realizing that each cross term appears once so that we get 3 the
number of cross terms in the full sum in the final expression. This is precisely
the expression obtained by Harberger (1964).

n

titjEij’
1

3.3. Example
Let us consider the Cobb~Douglas two-good case:
u=x{0,+A)'7% x>0, O<a<l, —Ad<x,<0. (l4)
This gives Marshallian demands
xy = aq; '(qA+1), (15)
X; = —A+(1-a)q; (q,4+1),
and substituting from demands in the utility function, the indirect utility function
u=oqr*(1—a) 7°q; 7 (g4 +1). (16)
Inverting, i.e., solving for /, we have the expenditure function
E= —gAd+ua™(1-0)*"'gqiq; ™% = —q,A+459} 7B, (17)
which serves as the definition of B. Differentiating E we have
xy =aBgi7'g;7%,  x, = —A+(1-0)Bgigr®. (18)
If we choose B such that E(p, u) = 0, then
B = Ap;°p5. (19)
Now consider a tax on good one

a . a—1

L(g,p,u) = —q,A+439; °pi*piA—at, Apy*pigi " g ~° (20)

:f a t t a—1
(e ]
Dy P\

LetT = tl/pl'
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Turning to marginal loss, we can differentiate eq. (20)

oL afp+t N afpi+t,\2!
— =p2A — —_— —
oty P\ P P\ D1

) _t_1<p1+t1>“"2] o
P P\ P

f f a-2
Py Pi\ P

= py A4 a(l —a)t(l +1)%" 2,

3.4. Varying prices

To consider the case of varying prices, let us return to the diagrammatic
treatment. In an economy with fixed producer prices, the production frontier
is a straight line. Thus we can interpret the diagram as describing the actual
technology rather than merely the budget constraint of the consumer. With
this interpretation, the provision of loss from outside the economy to restore
the consumer to his original utility level must be in real resources. With a linear
technology it does not matter which commodity is used for compensation. With a
nonlinear technology it matters which good is numeraire, i.e. is the good used
for compensation. Let us assume that the consumer good (good one) is used for
this purpose. Then the production frontier shifts up by the amount of compensa-
tion. We can now construct the analogues to figs. 1 and 2, showing the pre-tax
equilibrium 4 and the post-tax equilibrium B.

In fig. 3 we have equilibrium without any tax at 4 where an indifference curve
is tangent to the production frontier. The line through A tangent to both curves
represents both the budget line of the consumer and the maximal 1soprofit
line which can be reached by the firm. Thus the height of its intercept represents
the level of profits measured in units of good one. In fig. 4 we have the equili-
brium after-tax at B. The production function has been shifted vertically by
the amount of compensation. The line tangent to the production frontier at B
represents the maximal isoprofit line (measured in producer prices) which can be
reached by the firm. Thus the height of its intercept above the origin for the
shifted production frontier, 0’, is the level of profits measured in units of good
one. The line tangent to the indifference curve through B is the budget line of
the consumer. Thus the height of its intercept is the level of lump sum income
which the consumer has. This equals the value of the expenditure function at
these prices.

To set this up algebraically, let us introduce the profit function,® n(p), giving
the level of maximal profits available to a price taking firm when facing prices p.

°For details see D. McFadden.
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The loss is now the value of the expenditure function less the sum of tax revenue
and production profit. (As before, the utility level u is the no tax equilibrium
level, but now results in an expenditure function level at producer prices equal to
profits at the no tax equilibrium.)

L(p’ 9, u) = E(q, u)_T(q’pa u)— R(p) (22)

Before determining the marginal loss we must relate producer prices at equili-
brium to the tax structure which is chosen. To obtain this relationship we must
set up the market clearance equations. As with the expenditure function, the
derivatives of the profit function are the quantities supplied by the firm. For
goods 2 through n, market clearance requires equality of compensated demand
and supply,

Elqu) =np); i=23,..,n. (23)

With good one, however, market clearance includes the supply of compensation
coming from outside the economy,

E(q, u) = n(p)+L. (24)

It is a good exercise in the algebra (particularly the homogeneity) of expenditure
and profit functions to show that the two expressions for loss, eq. (22) and eq.
(24), are in fact equivalent. We can now write the marginal loss by differentiating
eq. (22), substituting p+1 for ¢ and determining p as a function of ¢ by the
n— 1 equations (23) and the choice of numeraire, p, = 1:

L{t, u) = Elp(t)+1, u] = Y t.E[p(1) + 1, u] = m[p(1)]. (25)
Differentiating this expression we have

oL

op; op.
= _ZtiEik+Z(Ei_ni)—I_ZtiZEij_pl (26)
o 5 i 7 0L,

i

= ‘“Zti(Eik‘f‘injg%) ’
j k
with the last step making use of market clearance and the choice of numeraire.
Rather than getting lost in the maze of the determination of the equilibrium
price vector, let us relate the loss derivative to the change in quantities in the
full equilibrium. Since the equilibrium quantities are “just the expenditure
function derivatives evaluated at the equilibrium prices, we have

0x; op
— = F, E.— . 27
ot ”‘+{,vf‘ Yot @7

Thus we can express the loss as the change in tax revenue arising from the
alteration of compensated equilibrium quantities in response to the relative
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price changes

oL 0X;
ot L Yot 28)

This equation also appears in Harberger (1964).

4. Taxes and welfare
4.1. Optimal commodity taxes

Having set up a loss function, it is natural to minimize it subject to the con-
straint of raising a given amount of revenue. (We again assume that producer
prices are fixed.)

Minimize L(q, p, u)
subject to 7(q, p, u) = constant. (29)

For this solution to reflect a possible equilibrium in the economy, we would have
to choose the appropriate utility level u. If the government were keeping
the revenue for expenditures and if there were no lump sum income in the
economy, the appropriate level of ¥ would coincide with a zero level for the
expenditure function at the gross of tax prices g for this would coincide with the
equilibrium utility level. If E(g, u) is zero, then ) ¢,E (g, ) is also zero. Thus the
revenue needs of the economy cannot be satisfied by distortion free proportional
taxation on all commodities, since no revenue would be gained. Thus the calculus
solution will be the second best solution not the first best.!® With a Lagrange
multiplier, 4, the first order conditions are

oL oT
— = A k=1,2...n. 30
oq; oq, 0

This expression has already been calculated above, eq. (11), giving the first
order conditions

—>t.FE.
__Li=,l; k=12,...n. (31)
E.+Y LE,

This coincides with the conditions in the optimal tax literature. See, e.g.,
W. Baumol and D. Bradford (1970) or P. Diamond and J. Mirrlees (1971).

4.2. Movement from proportional taxation

In addition to considering the determination of the full optimum, it is useful

10Since the equilibrium quantities are homogeneous of degree zero in consumer prices, an
alternative approach would be to normalize, e.g. ¢, = p,. However the'value of A depends on the
choice of numeraire, see A. Atkinson and N. Stern.
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to consider piecemeal welfare economics, evaluating the change in loss resulting
from a change in taxes starting from an arbitrary position and continuing to
raise the same revenue. One example of such analysis was the proof by W.C.
Corlett and D.C. Hague (1953) that a movement away from proportional
consumer good taxation (or equivalently away from an income tax) increased
utility when it increased the tax on the good with the lower compensated cross
elasticity with the wage (in 2 two consumer good, one type of labor model). To
consider this proposition in a loss setting, we wish to consider the change in
loss from an increase in g, adjusted by a decrease in ¢, which keeps T constant,
assuming g, = ps. Taking this derivative [and using eq. (10)] we have

dL oL dqz) oL
st Y (i £ [ (32)
(dql)r 0q, (dq1 r 04,

oL 0T/dq, oL

L —

-571-1 _6T/6q2 aq,

o -1
= (——]:> ((Zt,-E,-z)(El +Y 4E; )~ QHE (B, +ZtiEi2)>

09,

oT\ ™!
=(""‘) (EY tiEi—Ezy tE).

0q,

Assuming that tax revenue increases with a tax on the second good, that there
are three goods, and that we are evaluating from a position of proportional
taxation

t1=‘tq1, t2=1q2, t3=0.

The change in loss has the same sign as the second term in parentheses, which
we can evaluate:

Elzthiz—Ezz‘iEu = 1(E191E15+ E1q:E52— Erq By
—Eq,E;,) (33)
= 1(E,q:E31—E q;3E3,).

The last step follows from the homogeneity of degree zero of E; in prices
(recalling the symmetry of the Slutsky matrix), i.e.

Y E q =0. (34)
J

To complete the Corlett-Hague analysis we merely convert the demand deri-
vatives into elasticities

dL T\ ! q:E,; ‘13E23>
—_— = —— ’CE E - . 35
(d%)r (542> ! 2( E, E, | (3)
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Thus the loss goes down with an increase in the tax on the good with the lower
compensated elasticity with the wage.!!

5. Investment criteria

5.1. Area to the left of the demand curve

A standard procedure in considering lumpy investments is to compare the
cost of the investment with the area under the compensated demand curve.
We can use the expenditure function to obtain a simple justification for this
familiar procedure. We shall obtain an expression, in terms of the expenditure
function, which measures exactly whether the investment increases utility. By
differentiation, this can be expressed in terms of the area to the left of the
demand curve. Then, using integration by parts, we shall convert the expression
into one reflecting the area below the demand curves. The section concludes
with an example.

For the next subsection it is convenient to use a numeraire, so we introduce
it at the start.

Suppose the first commodity is numeraire, and let g and x denote prices and
quantities, respectively, of the remaining commodities. Also, let z denote a
quantity of the numeraire commodity; and 7, income. Assume that without the
project, the economy has an equilibrium with prices g4 and quantities z4, x.
Associated with this equilibrium is an income I* = z4+¢*. x* and utility level
u? = U(z4, x4). Being the equilibrium level, this utility level also satisfies

E(1, g4, ut) = 11, '(36)

Denote equilibrium values after construction of the project by g%, 2%, x8, I, u®,
Tautologically, the project is worth undertaking if and only if #® = u*. The
cost of the project, net of receipts on the project and of the change in profits
on other projects arising because of this construction, is /4 —I®. This is to be
compared to an evaluation of benefits in numeraire units.

Since the expenditure function is monotone increasing in utility, one has for
any price vector ¢ that u® = »* if and only if E(1, g, u®) = E(1, g, u*). Hence
the project is worth undertaking if and only if the following expression, which
we term surplus, S, is non-negative:*?

S = E(ls qBa uB)_E(l) qBa uA)
= E(l’ ‘]B, uB)—E(la qA: uA)+E(1, qA, uA)_E(ls ‘IB, uA)
= E(L qu uA)—E(17 ‘]B, uA)_(IA_IB)' (37)

1A similar proposition holds for the position at the optimum defined by eq. (34). At the
optimum in a three good model the good with the lower compensated elasticity with the wage
is taxed more heavily. See Meade (1955) or Diamond and Mirrlees (1971).

12The selection of g® as the price vector at which the expenditure comparison is made is
not fundamental. Choice of g4 or another alternative leads to an analogous expression for
surplus S. The magnitude of § is not invariant with respect to this choice of g, but its sign is
invariant and gives an unambiguous criterion for the worth of the project. -
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Thus, the project is worthwhile when the change in the expenditure function
(evaluated at the original utility level) induced by the change in prices from
constructing the project exceeds the cost of the project. Recalling that x =

X(q, u) = E1, q, u) is the compensated demand for the x commodities, eq. (41)
can be written

S = 1, X(g,u")-dg—(I*-1%). (38)

When there is a single commodity in addition to the numeraire, or if other
prices do not change, the integral in this expression is the area shown in fig. 5
assuming that good # is being produced by the project. More generally with
many commodities, the integral is a line integral evaluated on any path of

Compensated demand

\

A B
Xn xn

Fig. 5. Horizontal axis: quantity; vertical axis: price.

prices leading from ¢°® to ¢*. In particular, one can choose the path in which
components of g are changed successively from their values in ¢® to their values
in ¢*, and the integral equals the sum over non-numeraire commodities of areas
such as in fig. 5 with the appropriate intermediate price endpoints. Surplus
evaluated in this manner is independent of the path of integration; for the
specific path above, independent of the order in which the areas in the sum are
calculated.

5.2. Area below the demand curve

A more familiar form of the investment criterion (37) can be obtained by
using integration by parts. For this we need to introduce the inverse of the de-
mand curves. When the utility function is continuously differentiable and
strictly quasi-concave in (z, x), the expenditure function E(1, g, u) is continu-
ously differentiable and strictly concave in g, and the system of demand equations
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x = E(1, g, u) has a unique inverse ¢ = Q(x, u) giving the prices at which x
will be chosen. If we let z = Z(x, u) denote an indifference curve, satisfying
u = U[Z(x, u), x], then it follows from the first-order conditions for utility
maximization and differentiation of this identity that —Z (x, u) = Q(x, u).

It is a straightforward calculus exercise to verify the following identity for
these functions, which in the case of a single non-numeraire commodity reduces
to the ordinary formula for integration-by-parts:

iy X(g,u)-dg = g*-x*—g"-x"— [* O(x, u")-dx. (39)
Substituting this expression in eq. (38) yields
S= 7 00, ut)-dx—(I"—g* - x"— I"+4" - x%)
= J7 QCx, u*) dx—(z*—2P), (40)
= 28— Z(xB, ut). (41)

Compensated -demand

Fig. 6. Horizontal axis: quantity; vertical axis: price.

From the last line of the equality (41) we have the obvious condition that the
project is worth undertaking if the quantity of numeraire good in equilibrium
with the project exceeds the level necessary for achieving the utility level without
the project, given the quantities of other goods produced in equilibrium with
the project. From eq. (40) we can state the investment criterion as a comparison
of the area under the compensated inverse demand curve with the cost of the
project measured in terms of net numeraire units foregone. In the case of a single
non-numeraire commodity or a project small enough to leave all other non-
numeraire quantities constant, the integral in eq. (41) gives the area shown in
fig. 6. With labor as numeraire, z* —z® then equals the change in product cost
between the two equilibria. In the multiple-commodity case, the integral in eq.
(41) is again a line integral, independent of path, to be evaluated on any path
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from x* to x®. A further division of project cost into fixed and marginal costs
woulc'l allow eq. (40) to be written as the area between the inverse demand
function and the marginal cost curve for any path from x4 to x?, less the fixed
cost of the project in numeraire units.

5.3. Example
Consider an economy with a single consumer with utility function
u = x¥(24+2)%. (42)

Assume there are two production processes for converting good two (z) to
good one (x)

x+z=0; z

IA
L

(43)
and
x+a(z+4) = 0; z

A
I
>

a>1. (44)

Z _—

Process one Process two

Aggregate production
possibilities I B!
a-T

1

|

I

!

43
a-1

Fig. 7
From the example above, we have the expenditure function [see eq. (17)]
E(q1, 92, u) = 2uqiqi—24q,. (45)
If just process one is available the optimum occurs at

x=12, z= -12, u =12, (46)
and
E(1,1,12) = 0. 47)
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With good two as numeraire assuming undertaking of the project to provide

process two, the equilibrium price satisfiesq, = a~ !, and the profit is

nm=qg,x+qz =a (—az—4a)+z = —4. (48)
Evaluating the expenditure function at these prices

E(@™',1,12) = 24(a"*-1). (49)
Thus

E@ ', 1,12)(s)—4, as a*(s)1.2. (50)

Thus process two should be adopted fora* = 1.2.
Let us check this by calculating utility if just process 2 is available. Because

the utility function is Cobb-Douglas we know that we want x > 0. Substituting
we can express the maximization as

max(x)*(24—4—a” 'x)*. (51)
For this the FOC 1s

Ix"'—4a 'Q4—4—a 'x)" 1 = 0, (52)

x = 10a, (53)

u = (10a)*(10)* = 10a?.

Thus utility with just process two exceeds that with just process one if a¢* >
1.2

Appendix
Properties of the expenditure function
The expenditure function, defined in eq. (2) by
E(g;u) = Ming-x subject to U(x) = u, (A1)

provides an indirect representation of preferences which is a useful starting

point for many applications of demand theory. The following propositions
summarize its properties.

Proposition 1. 1f the utility function U is continuous, strictly quasi-concave,
and locally non-satiated, then the expenditure function Eis

(I) homogeneous of degree one, concave, and continuously differentiable in
positive prices;

(2) strictly increasing in u; and
(3) continuous jointly in prices and .

The partial derivative of E with respect to the ith price equals the compensated
demand function for the ith commodity.
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Proofs of Proposition 1 can be found in McFadden (forthcoming), Rocka-
fellar (1970), and Shephard (1970). The demonstration that the expenditure
function is homogeneous of degree one and concave in prices is simple and
illustrates the spirit of the analysis, and hence is reproduced here: The homo-
geneity property is a consequence of the fact that a proportional change in
prices leaves the opportunity set, hence the optimal commodity vector, un-
changed. To show concavity, suppose g and ¢’ are two price vectors, and
g* = g+ (1 —0)q for some 0 < 6 < 1. Let x* be the expenditure-minimizing
commodity vector at the price vector ¢g*. Since U(x*) = u, cost minimization
impliesq-x* 2 E(q, uYand q'-x* = E(q’;u). Hence,

ElOg+(1-0)q,u) = qg*-x* = 0g.-x*+(1—-0)q - x*
= 0E(q, u)+(1—-0)E(q’, u),

the defining inequality for concavity.

An elementary derivation of the derivative property of the expenditure
function which also establishes the existence of the derivative is given in McFad-
den (forthcoming). Arguments drawing more heavily on mathematical properties
have been given by Rockafellar (1970) and Shephard (1970). The monotonicity
and joint continuity properties (2) and (3) are established in McFadden (forth-
coming).

Proposition 2. If a function E satisfies properties (1)=(3) in Proposition 1,
then there exists a continuous, strictly quasi-concave, locally non-satiated
utility function U such that E equals the expenditure function derived from U.
The function U satisfies

U(x) = Max{u|q’x 2 E(q';u)for all positiveq'}. (A2)

Proposition 2 is called the Shephard-Uzawa duality theorem, and is proved
in the three references above. The significance of this proposition lies in the fact
that the previously established properties of expenditure functions completely
characterize such functions. In applications, this implies that any function E
satisfying (1)-(3) must necessarily be derivable from some utility function U.
Consequently, the applied analyst can proceed to work with this ‘expenditure’
function without explicitly displaying the underlying utility function.

The bordered Hessian of a utility function U is the matrix

T 0 oU/ox, .... oU/ox,
dUlox,  02U/ox? ....0%Ulox,0x,
; T : . (A3)

| 0UJox, 32UJox,0x,....0°UJox2

A
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The Hessian of an expenditure function E is the matrix
O*Elogh........ 02E|dq,0q,"

: R (Ad)
| 0°E|0g,0q, ... ... 0%E|dq>

Since the first partial derivatives of E with respect to prices are the compensated
demand functions, the Hessian matrix of E is the Slutsky or substitution matrix
of cross-price effects.

Proposition 3. If U is continuous, strictly quasi-concave, and locally non-
satiated, then the Hessian matrix of E exists, and is symmetric and negative
semidefinite, for almost all positive price vectors.'® If U is, further, continu-
ously differentiable, then FE is strictly quasi-concave in prices. If Uis, further,
twice continuously differentiable with a non-singular bordered Hessian, then E
is twice continuously differentiable and the Hessian matrix of £ is of rank n—1
for all positive prices.

This proposition is proved in McFadden (forthcoming) and proved in a
slightly different context by Samuelson (1947). It provides the basis for neo-
classical comparative statics analysis, with the non-singularity of the bordered
Hessian matrix of U guaranteeing the existence of implicitly defined derivatives
of compensated demand.

As indicated in the text, the expenditure function I = E(q;u) can be inverted
to give the indirect utility function u = E~!(q;I) = V(g/I). The identity
I = E[g, V(q/1)] and the derivative property of the expenditure function can be
used to derive the classical relationship between market demand functions and
the derivatives of the indirect utility function (the Roy identity):

x{g, 1) = —(9V]dqp/(aV]ol).

13This conclusion requires only that a utility-maximizing vector exist for each positive

income and price vector. In particular, concavity and continuity of U are not required for
this result.
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